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C L I M A T O L O G Y

Permafrost thawing puts the frozen carbon at risk over 
the Tibetan Plateau
Taihua Wang1, Dawen Yang1*, Yuting Yang1*, Shilong Piao2, Xin Li3,4,  
Guodong Cheng5,6, Bojie Fu7

Soil organic carbon (SOC) stored in permafrost across the high-latitude/altitude Northern Hemisphere represents 
an important potential carbon source under future warming. Here, we provide a comprehensive investigation on the 
spatiotemporal dynamics of SOC over the high-altitude Tibetan Plateau (TP), which has received less attention com-
pared with the circum-Arctic region. The permafrost region covers ~42% of the entire TP and contains ~37.21 Pg 
perennially frozen SOC at the baseline period (2006–2015). With continuous warming, the active layer is projected 
to further deepen, resulting in ~1.86 ± 0.49 Pg and ~3.80 ± 0.76 Pg permafrost carbon thawing by 2100 under moderate 
and high representative concentration pathways (RCP4.5 and RCP8.5), respectively. This could largely offset the 
regional carbon sink and even potentially turn the region into a net carbon source. Our findings also highlight the 
importance of deep permafrost thawing that is generally ignored in current Earth system models.

INTRODUCTION
Permafrost is defined as the subsurface material at or below 0°C for 
at least two consecutive years, which underlies about one-quarter 
of the land area in the Northern Hemisphere (1, 2). Recent obser-
vations reveal widespread permafrost degradation in the Northern 
Hemisphere, including rising ground temperature at the global scale 
(3) and thickening active layer in circum-Arctic and alpine permafrost 
regions (4). It has been estimated that the circum-Arctic permafrost 
regions contain 1460 to 1600 Pg soil organic carbon (SOC), about 
twice as much carbon as there is in the atmosphere, with ~800 Pg 
SOC currently frozen in permafrost (5, 6). With climate warming, 
substantial increases in carbon emission from permafrost regions, 
in the form of either CO2 or CH4, have been observed over the 
past decades due to permafrost thawing (7). A large amount of SOC 
stored in permafrost also represents an important potential carbon 
source in a warming climate and can trigger a strong permafrost 
carbon–climate feedback (8–15). Model estimates of permafrost 
thawing–induced carbon emission lie in the range of 6 to 33 Pg and 
23 to 174 Pg by 2100 under representative concentration pathway 
4.5 (RCP4.5) and RCP8.5, respectively (8, 16), potentially offsetting 
the global land carbon sink (~160 Pg by 2100) (17) and even revers-
ing the circum-Arctic permafrost region from a net carbon sink 
(~35 Pg by 2100) (18) to a net carbon source under future climate 
scenarios (9–11).

Existing studies on permafrost carbon release, however, are typ-
ically restricted to shallow soil profiles down to ~3 m deep (9, 12–14), 
although some recent studies emphasize the importance of deep 

permafrost carbon release due to abrupt thawing (16, 19). This 
might reasonably depict gradual permafrost carbon thawing for 
the circum-Arctic region where the active layer thickness (ALT) is 
generally shallower than 3 m (20) but could considerably under-
estimate permafrost carbon release in other regions with deeper 
active layers, such as the Tibetan Plateau (TP). The TP, also known as 
the third pole of Earth, contains the largest area of alpine permafrost 
in the world. The third pole region has been subjected to serious 
permafrost degradation according to the observations due to drastic 
climate warming over the past decades (21), including active layer 
deepening at a rate faster than that in the circum-Arctic regions (4), 
an upward move of the lower altitudinal limit of permafrost (22), 
and a continuous decrease in the area occupied by cold permafrost 
types (23). Recent observations also indicate that the ALT in TP is 
generally deeper than that in the circum-Arctic region and can be 
greater than 3 m where a high carbon quality is presented (4, 24, 25). 
Unfortunately, permafrost carbon storage/release has not been 
comprehensively quantified across the entire TP and has rarely been 
included in current global scale permafrost carbon inventories (5). 
Consequently, the magnitude of permafrost carbon response to 
future climate warming, especially permafrost carbon thawing from 
deep soil layers, remains largely unknown over TP.

Here, we attempt to fill this knowledge gap based on extensive in 
situ observations and data-driven approaches. We collected perma-
frost data including 143 observations of mean annual ground tem-
perature (MAGT) at or near the zero annual amplitude depth (i.e., 
the maximum depth affected by the annual temperature variations) 
and 93 observations of ALT from boreholes obtained from sources 
listed in table S1, as well as SOC observations at different depths 
from more than 100 sites measured after 2006 in the TP permafrost 
region from literatures (24, 26, 27) to estimate permafrost, ALT, 
and SOC distributions over the TP. Three data-driven methods, 
including support vector machine (SVM), random forest (RF), and 
gradient boosting decision tree (GBDT), were adopted to upscale 
site observations to the entire region (Materials and Methods). The 
most recent decade (i.e., 2006–2015) was selected as the baseline 
period to represent the current climate scenario. Then, we estimated 
the future warming-induced ALT deepening and assessed the 
potential permafrost carbon release risk over TP using the Stefan 
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equation and future temperature projections from 18 Coupled Model 
Intercomparison Project Phase 5 (CMIP5) models under RCP4.5 and 
RCP8.5 scenarios (Materials and Methods).

RESULTS
Permafrost and ALT distribution
Adopting the 143 MAGT and 93 ALT observations across TP (table S1 
and fig. S1), the three data-driven approaches (i.e., SVM, RF, and 
GBDT) were found to exhibit similar performance (fig. S2). There-
fore, the ensemble mean estimates of the three algorithms were 
adopted for further analysis. As shown in Fig. 1A, the permafrost 
region on the TP covers ~1.30 × 106 km2 (~42% of the entire TP), 
and the estimated average ALT in the baseline period (2006–2015) 
is 2.34 m over the permafrost region with an SD of 0.70 m. The ALT 
shallower than 2 m (~34% of the TP permafrost region) during 
the baseline period generally occurs in the northwestern TP, where 
the mean annual air temperature (MAAT) is lower than −8°C and the 
mean annual precipitation (MAP) is less than 200 mm, as well as 
in the eastern and southern TP, where the MAP is larger than 
500 mm despite the relatively higher air temperature. Deeper ALTs 
(i.e., >3 m, covers ~15% of the TP permafrost region) generally 
concentrate in the central TP, with the MAAT higher than −5°C 
and the MAP less than 500 mm (fig. S3).

SOC distribution
To estimate permafrost carbon storage, SOC observations mea-
sured after 2006 in the TP permafrost region were collected (fig. S4) 

(24, 26, 27) and extrapolated to the entire TP. In this modeling ex-
ercise, RF outperforms the other two algorithms in estimating SOC 
so that only the results derived from RF is adopted for SOC analysis 
(fig. S5). The estimated amount of SOC stored in the TP permafrost 
region is 15.33 Pg within 0- to 3-m soil depth, ~17% of which (2.26 Pg) 
is currently frozen in permafrost. The 0- to 3-m thawed SOC shows 
a mean value of 6.14 kg/m2 with a large spatial variability (Fig. 2A). 
Larger SOC stocks (>20 kg/m2) are generally found in alpine swamp 
meadows in the eastern mountainous regions, where growing season 
leaf area index (LAI) is larger than 0.35 and MAP is higher than 
400 mm (Fig. 2A and fig. S6). Larger growing season LAI indicates 
a higher carbon assimilation capacity, and higher precipitation amount 
further ensures a more favorable moisture condition for vegetation 
growth (28). In comparison, lower 0- to 3-m SOC (<10 kg/m2) is 
mostly distributed in the alpine steppe and desert in the central and 
western TP with growing season LAI smaller than 0.3 and MAP less 
than 450 mm (Fig. 2A and fig. S6). In addition, the SOC stored within 
3- to 6-m soil depth is estimated to be 6.25 Pg (uncertainty range, 
4.86 to 7.82 Pg), with ~97% currently frozen in permafrost, indicating 
a low baseline period 3- to 6-m thawed SOC distribution (mean value 
of 0.12 kg/m2; Fig. 2D). There are still 28.85 Pg (uncertainty range, 
15.59 to 45.86 Pg) SOC stored in 6- to 25-m soil layers in the permafrost 
region of TP, which is potentially a large carbon source in the future 
if the warming persisted. In total, we estimate a SOC storage of 50.43 Pg 
(uncertainty range, 35.78 to 69.02 Pg) over the TP permafrost region, 
with 13.22 Pg (uncertainty range, 13.19 to 13.26 Pg) seasonally thawed 
within the active layer and the remaining 37.21 Pg (uncertainty range, 
22.59 to 55.75 Pg) frozen in permafrost for the baseline period.
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existing global permafrost carbon inventory, which has been only 
focusing on the circum-Arctic region (5). On the basis of the Stefan 
equation and climate projections from CMIP5 models, our study 
assessed potential permafrost carbon release over TP under different 
climate change mitigation pathways and found that the amount of 
potentially thawed permafrost carbon could largely offset the regional 
carbon sink and even turn the region into a net carbon source. Our 
results demonstrate that the permafrost carbon thawing from deep 
layers (>3 m) could constitute a large proportion (29.6 to 46.2%) of 
the total permafrost carbon loss in a warmer future over TP, high-
lighting the importance of deep permafrost thawing in future 
carbon budget over the third pole region.

MATERIALS AND METHODS

https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/
http://srtm.csi.cgiar.org/srtmdata/
http://srtm.csi.cgiar.org/srtmdata/
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html
https://lpdaac.usgs.gov/products/mod15a2hv006/
https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
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and (ii) temperature change in the available 18 CMIP6 models shows 
a larger cross-model difference in the TP permafrost region compared 
with the 18 CMIP5 models used in this study, suggesting an even 
larger uncertainty in temperature projection in CMIP6 models.

Data-driven mapping of MAGT and ALT
Most boreholes were drilled in regions where MAGT is close to 0°C, 
and our 143 MAGT observations range from −3.38° to 3.80°C. The 
difference between MAAT and MAGT was used to train the data-
driven models. This is because if MAGT was directly used, it would 
be difficult for the data-driven models to get the MAGT value be-
yond the observed range.

ALT can be estimated by the simplified Stefan equation (20), 
given as

	​ ALT = E ​√ 
_

 TI ​​	 (3)

where TI is the thawing index (°C day) and E is a catchall scaling 
parameter (E-factor) influenced by local characters including vege-
tation, snow cover, and local soil texture. We calculated the E-factor 
on the basis of observations at the 93 sites by the following equation

	​ E = ALT / ​√ 
_

 TI ​​	 (4)

Three different algorithms including SVM (38), RF (39), and 
GBDT (40) were selected for data-driven mapping of MAGT and 
ALT. These three algorithms were selected because they belong to 
different subdomains of supervised machine learning techniques: 
nonparametric kernel methods and ensemble methods (bagging 
and boosting). The applicability of these algorithms was compared 
and evaluated to select an algorithm with the best performance. If 
the performances of different algorithms are similar, we use the 
ensemble mean results from the different algorithms to reduce 
uncertainty. Nine variables including TI, FI, Prain, Psnow, growing 
season LAI, soil bulk density, gravel content, silt content, and clay 
content were selected as local environmental predictors. We used 
the 143 observed MAGT-MAAT and 93 calculated E-factor values 
as the labels to train the models. The predicted MAGT-MAAT was 
then added to MAAT to get the estimated MAGT, and the predicted 
E-factor was multiplied by the square root of TI to get the ALT 
estimates.

To evaluate the models, we randomly split the site-level observations 
into calibration (90% of the observations) and evaluation (10%) 
datasets for 100 times. At each time, we fitted the models with the 
calibration dataset and tested the calibrated model using the remain-
ing 10% evaluation data (35). Model performance was assessed with 
the root mean square error and correlation coefficient (r). The three 
data-driven approaches showed similar performance in predicting 
MAGT and ALT (figs. S1 and S2) so the ensemble mean estimates 
from the three algorithms were used in our analysis.

MAGT is defined as the mean annual ground temperature at or 
near (the closest to) the depth of zero annual amplitude usually 
ranging from 10 to 15 m over TP (41). Because permafrost in TP is 
warmer than that in Arctic regions, this study uses MAGT <1°C as 
the criterion for the presence of permafrost and to obtain the extent 
of permafrost region (fig. S9A). The area of permafrost region in TP 
was estimated to be 1.30 × 106 km2 in the baseline period, more 
reasonable than the permafrost maps derived from the MAGT 
threshold of 0° or 2°C compared with recently published permafrost 

maps over TP (fig. S9). The scope of the permafrost region over TP 
in the baseline period was adopted for permafrost carbon analysis, 
and this analysis scope was assumed to be unchanged in the future. 
As for the future ALT, the E-factor values were assumed constant 
over time following a previous study (20). The future ALT was then 
estimated by the simplified Stefan equation (Eq. 1) using the base-
line period E-factor distribution and the future TI distribution 
derived from the bias-corrected air temperature from CMIP5 models. 
The procedures of estimating MAGT and ALT distribution are shown 
in fig. S10.

Data-driven mapping of SOC
The distribution of 0- to 1-m SOC was estimated using the 314 
available 0- to 1-m SOC observations as labels and seven variables 
including MAAT, MAP, growing season LAI, soil bulk density, gravel 
content, silt content, and clay content as the local environmental 
predictors to train the data-driven models. The same random split 
method as we applied for evaluating MAGT and ALT estimates 
was used to evaluate the SOC estimates. Among the three machine 
learning approaches, the RF outperformed the other two algorithms 
in estimating SOC; thus, only the results derived from RF were 
adopted for soil carbon analysis (fig. S5). Then, we used the RF 
model trained by all the available observations to predict the 0- to 
1-m SOC distribution over the TP permafrost region.

We estimated the 1- to 2-m SOC distribution using the 314 
available 1- to 2-m SOC observations as labels and selected eight 
variables including the seven variables used in estimating the 0- to 
1-m SOC and the 0- to 1-m SOC stock as the local environmental 
predictors to train the model. Similarly, we estimated the 2- to 3-m 
SOC distribution using the 114 available 2- to 3-m SOC observations 
as labels and used five variables including MAAT, MAP, growing 
season LAI, and 0- to 1-m and 1- to 2-m SOC stock as the local 
environmental predictors for training the model. The four soil 
properties (i.e., soil bulk density, gravel content, silt content, and 
clay content) were not used, as there is no soil property information 
for deep soil layers. For 1- to 2-m and 2- to 3-m SOC predictions, 
only the RF algorithm was adopted, and the model evaluation results 
were shown in fig. S5. Then, we used the RF model trained by all the 
available observations to predict the 1- to 2-m and 2- to 3-m SOC 
distribution over the TP permafrost region. The procedures for 
estimating SOC distribution at 0- to 1-m, 1- to 2-m, and 2- to 3-m 
depths were depicted in fig. S11.

Because of the high variance in SOC along depth in the range of 
0 to 2 m, for each of the 11 boreholes, we calculated the deep-layer 
SOC stock (>3 m) as percentage of 2- to 3-m SOC, with 2- to 3-m 
SOC set to be 100% as the baseline (i.e., SOC stocks below 3 m at 1-m 
depth interval divided by 2- to 3-m SOC stock at each borehole), 
and derived the median, 25th percentile, and 75th percentile values 
of different borehole percentages at each 1-m depth interval down 
to 25 m (fig. S8B). Then, the spatial distribution of SOC stock deeper 
than 3 m was determined by multiplying the gridded 2- to 3-m 
SOC with these percentages. However, not all regions have the soil 
carbon extending to 25 m. Therefore, we obtained the depth to bed-
rock (DTB) data from Global Depth to Bedrock Dataset for Earth 
System Modeling (http://globalchange.bnu.edu.cn/research/dtb.jsp) 
(42) and only considered the soil carbon in permafrost regions 
down to the lesser of 25 m and DTB. In the main text, we expressed 
the permafrost carbon stock estimates deeper than 3 m derived 
from the median relative SOC profile according to the 11 borehole 
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observations followed by the results derived from 25th percentile 
and 75th percentile SOC profile as the uncertainty range. For future 
projections, the carbon thawed from permafrost over a period was 
determined by summing up the SOC mass contained in the depths 
of layers where it used to be permafrost in the baseline period but is 
projected to degrade into part of the active layer (the layers where 
ALT increases occur) in the future period. The amount of cumulative 
thawed permafrost carbon derived from the mean, 25th percentile, 
and 75th percentile SOC profile according to the 11 borehole ob-
servations in the coming century was compared in fig. S12. It shows 
that the difference induced by varying deep SOC profiles is relatively 
small compared with that induced by different CMIP5 models. 
Therefore, in the main text, we only expressed the amount of ad-
ditionally thawed permafrost carbon derived from the median SOC 
profile according to the 11 borehole observations followed by the 
uncertainty range caused by the 18 CMIP5 models, indicated by 
multimodel mean ± SD.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/19/eaaz3513/DC1
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